Technical architecture for self-governing agents with native USDC wallets and cross-web capabilities
// Core agent state management
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct AgentState {
// Identity and configuration
pub id: AgentId,
pub did: String,
pub agent_type: AgentType,
pub capabilities: Vec<Capability>,
// Financial state
pub wallet: WalletState,
pub treasury: TreasuryState,
pub spending_history: Vec<Transaction>,
// Operational state
pub tasks: VecDeque<Task>,
pub goals: Vec<Goal>,
pub memory: AgentMemory,
pub context: ExecutionContext,
// Network state
pub connections: HashMap<String, ConnectionState>,
pub reputation: ReputationScore,
pub performance_metrics: PerformanceMetrics,
// Security state
pub permissions: PermissionSet,
pub audit_trail: Vec<AuditEvent>,
pub risk_assessment: RiskAssessment,
}
impl AgentState {
pub fn new(config: AgentConfig) -> Self {
Self {
id: AgentId::generate(),
did: format!("did:stateset:agent:{}", Uuid::new_v4()),
agent_type: config.agent_type,
capabilities: config.capabilities,
wallet: WalletState::new(config.initial_balance),
treasury: TreasuryState::new(),
spending_history: Vec::new(),
tasks: VecDeque::new(),
goals: config.initial_goals,
memory: AgentMemory::new(),
context: ExecutionContext::default(),
connections: HashMap::new(),
reputation: ReputationScore::new(),
performance_metrics: PerformanceMetrics::new(),
permissions: config.permissions,
audit_trail: Vec::new(),
risk_assessment: RiskAssessment::new(),
}
}
pub async fn execute_cycle(&mut self) -> Result<ExecutionResult> {
// 1. Perception: Gather information
let perception = self.perceive_environment().await?;
// 2. Cognition: Process and decide
let decisions = self.make_decisions(perception).await?;
// 3. Action: Execute decisions
let actions = self.execute_actions(decisions).await?;
// 4. Learning: Update state based on results
self.learn_from_results(actions).await?;
Ok(ExecutionResult { actions })
}
}
// Agent decision-making system
pub struct CognitiveEngine {
reasoning_engine: ReasoningEngine,
learning_system: LearningSystem,
goal_planner: GoalPlanner,
memory_manager: MemoryManager,
}
impl CognitiveEngine {
pub async fn make_decision(
&self,
context: &ExecutionContext,
goals: &[Goal],
constraints: &[Constraint],
) -> Result<Decision> {
// Multi-step reasoning process
let options = self.generate_options(context, goals).await?;
let filtered_options = self.apply_constraints(options, constraints)?;
let evaluated_options = self.evaluate_options(filtered_options).await?;
let best_option = self.select_best_option(evaluated_options)?;
// Create decision with rationale
Ok(Decision {
action: best_option.action,
confidence: best_option.confidence,
rationale: best_option.reasoning,
risk_assessment: best_option.risks,
expected_outcome: best_option.expected_outcome,
})
}
async fn generate_options(
&self,
context: &ExecutionContext,
goals: &[Goal],
) -> Result<Vec<ActionOption>> {
let mut options = Vec::new();
// Generate options for each goal
for goal in goals {
let goal_options = match goal.goal_type {
GoalType::Financial => self.generate_financial_options(context, goal).await?,
GoalType::Operational => self.generate_operational_options(context, goal).await?,
GoalType::Strategic => self.generate_strategic_options(context, goal).await?,
};
options.extend(goal_options);
}
Ok(options)
}
}
// Native USDC wallet for autonomous agents
pub struct AgentWallet {
address: String,
private_key: SecretKey,
balance: Balance,
transaction_history: Vec<Transaction>,
spending_limits: SpendingLimits,
multi_sig_config: Option<MultiSigConfig>,
treasury_strategy: TreasuryStrategy,
}
impl AgentWallet {
pub async fn new(config: WalletConfig) -> Result<Self> {
let (private_key, public_key) = generate_keypair();
let address = derive_address(&public_key);
Ok(Self {
address,
private_key,
balance: Balance::new(),
transaction_history: Vec::new(),
spending_limits: config.spending_limits,
multi_sig_config: config.multi_sig,
treasury_strategy: config.treasury_strategy,
})
}
pub async fn execute_payment(
&mut self,
recipient: &str,
amount: &str,
memo: Option<String>,
) -> Result<TransactionResult> {
// Pre-transaction validation
self.validate_payment(recipient, amount).await?;
// Check spending limits
self.check_spending_limits(amount)?;
// Execute transaction on StateSet network
let tx = Transaction {
from: self.address.clone(),
to: recipient.to_string(),
amount: amount.parse()?,
memo,
timestamp: Utc::now(),
};
let signed_tx = self.sign_transaction(&tx)?;
let result = self.broadcast_transaction(signed_tx).await?;
// Update local state
self.balance.subtract(amount.parse()?)?;
self.transaction_history.push(tx);
Ok(result)
}
pub async fn optimize_treasury(&mut self) -> Result<OptimizationResult> {
match &self.treasury_strategy {
TreasuryStrategy::Conservative => self.conservative_optimization().await,
TreasuryStrategy::Balanced => self.balanced_optimization().await,
TreasuryStrategy::Aggressive => self.aggressive_optimization().await,
}
}
async fn balanced_optimization(&mut self) -> Result<OptimizationResult> {
let current_balance = self.balance.usdc.clone();
let target_allocation = self.calculate_target_allocation(¤t_balance).await?;
let mut actions = Vec::new();
// Staking allocation (40% of idle funds)
if target_allocation.staking > 0 {
actions.push(TreasuryAction::Stake {
amount: target_allocation.staking,
validator: self.select_validator().await?,
duration: Duration::days(30),
});
}
// Liquidity provision (30% of idle funds)
if target_allocation.liquidity > 0 {
actions.push(TreasuryAction::ProvideLiquidity {
pool: "USDC/STATE".to_string(),
amount: target_allocation.liquidity,
min_apr: 0.05, // 5% minimum APR
});
}
// Keep 30% liquid for operations
// Execute treasury actions
for action in &actions {
self.execute_treasury_action(action).await?;
}
Ok(OptimizationResult { actions })
}
}
// Multi-signature wallet for high-value agent operations
pub struct MultiSigAgentWallet {
threshold: u8,
signers: Vec<AgentSigner>,
pending_transactions: HashMap<String, PendingTransaction>,
execution_policy: ExecutionPolicy,
}
impl MultiSigAgentWallet {
pub async fn propose_transaction(
&mut self,
transaction: Transaction,
proposer: AgentId,
) -> Result<ProposalId> {
let proposal_id = Uuid::new_v4().to_string();
// Create pending transaction
let pending = PendingTransaction {
id: proposal_id.clone(),
transaction,
proposer,
signatures: Vec::new(),
created_at: Utc::now(),
expires_at: Utc::now() + Duration::hours(24),
};
self.pending_transactions.insert(proposal_id.clone(), pending);
// Notify other signers
for signer in &self.signers {
self.notify_signer(signer, &proposal_id).await?;
}
Ok(proposal_id)
}
pub async fn sign_transaction(
&mut self,
proposal_id: &str,
signer: AgentId,
signature: Signature,
) -> Result<SignatureResult> {
let pending = self.pending_transactions
.get_mut(proposal_id)
.ok_or(Error::ProposalNotFound)?;
// Verify signature
self.verify_signature(&pending.transaction, &signature, &signer)?;
// Add signature
pending.signatures.push(AgentSignature {
signer,
signature,
signed_at: Utc::now(),
});
// Check if threshold reached
if pending.signatures.len() >= self.threshold as usize {
let result = self.execute_transaction(pending).await?;
self.pending_transactions.remove(proposal_id);
Ok(SignatureResult::Executed(result))
} else {
Ok(SignatureResult::SignatureAdded)
}
}
}
// Model Context Protocol gateway for cross-web interactions
pub struct MCPGateway {
connections: HashMap<String, MCPConnection>,
protocol_router: ProtocolRouter,
state_synchronizer: StateSynchronizer,
event_bus: EventBus,
}
impl MCPGateway {
pub async fn connect_to_service(
&mut self,
service_name: &str,
config: ServiceConfig,
) -> Result<ConnectionId> {
let connection = MCPConnection::new(service_name, config).await?;
let connection_id = connection.id.clone();
// Establish bidirectional communication
connection.handshake().await?;
// Register available tools and resources
let tools = connection.list_tools().await?;
let resources = connection.list_resources().await?;
self.protocol_router.register_service(service_name, tools, resources)?;
self.connections.insert(connection_id.clone(), connection);
Ok(connection_id)
}
pub async fn execute_cross_platform_action(
&self,
service: &str,
action: CrossPlatformAction,
) -> Result<ActionResult> {
let connection = self.connections
.get(service)
.ok_or(Error::ServiceNotConnected)?;
match action {
CrossPlatformAction::ReadResource { name, args } => {
self.read_resource(connection, &name, args).await
},
CrossPlatformAction::CallTool { name, args } => {
self.call_tool(connection, &name, args).await
},
CrossPlatformAction::UpdateState { path, value } => {
self.update_state(connection, &path, value).await
},
}
}
async fn call_tool(
&self,
connection: &MCPConnection,
tool_name: &str,
args: serde_json::Value,
) -> Result<ActionResult> {
// Prepare MCP tool call message
let request = MCPRequest::CallTool {
name: tool_name.to_string(),
arguments: args,
};
// Send request through connection
let response = connection.send_request(request).await?;
// Process response
match response {
MCPResponse::ToolResult { content, is_error } => {
if is_error {
Err(Error::ToolExecutionFailed(content))
} else {
Ok(ActionResult::Success { data: content })
}
},
_ => Err(Error::UnexpectedResponse),
}
}
}
// State synchronization across web platforms
pub struct CrossWebStateManager {
local_state: AgentState,
remote_states: HashMap<String, RemoteState>,
sync_policies: Vec<SyncPolicy>,
conflict_resolver: ConflictResolver,
}
impl CrossWebStateManager {
pub async fn sync_state_across_platforms(
&mut self,
platforms: Vec<String>,
) -> Result<SyncResult> {
let mut sync_operations = Vec::new();
for platform in platforms {
// Get current state from platform
let remote_state = self.get_remote_state(&platform).await?;
// Detect conflicts
let conflicts = self.detect_conflicts(&platform, &remote_state)?;
if !conflicts.is_empty() {
// Resolve conflicts using configured strategy
let resolutions = self.conflict_resolver.resolve(conflicts).await?;
sync_operations.extend(resolutions);
}
// Generate sync operations
let platform_ops = self.generate_sync_operations(&platform, &remote_state)?;
sync_operations.extend(platform_ops);
}
// Execute all sync operations atomically
self.execute_sync_operations(sync_operations).await
}
async fn propagate_state_change(
&self,
change: StateChange,
target_platforms: Vec<String>,
) -> Result<PropagationResult> {
let mut results = Vec::new();
for platform in target_platforms {
match self.apply_change_to_platform(&platform, &change).await {
Ok(result) => results.push(PlatformResult::Success(result)),
Err(error) => results.push(PlatformResult::Error(error)),
}
}
Ok(PropagationResult { results })
}
}
// Specific adapters for different platforms
pub trait PlatformAdapter {
async fn authenticate(&self, credentials: Credentials) -> Result<AuthToken>;
async fn read_data(&self, resource: &str) -> Result<serde_json::Value>;
async fn write_data(&self, resource: &str, data: serde_json::Value) -> Result<WriteResult>;
async fn execute_action(&self, action: PlatformAction) -> Result<ActionResult>;
async fn subscribe_to_events(&self, events: Vec<String>) -> Result<EventStream>;
}
// Salesforce adapter
pub struct SalesforceAdapter {
base_url: String,
auth_token: Option<String>,
http_client: HttpClient,
}
impl PlatformAdapter for SalesforceAdapter {
async fn execute_action(&self, action: PlatformAction) -> Result<ActionResult> {
match action {
PlatformAction::CreateLead { name, email, company } => {
let payload = json!({
"FirstName": name.split_whitespace().next().unwrap_or(""),
"LastName": name.split_whitespace().last().unwrap_or(""),
"Email": email,
"Company": company
});
self.salesforce_api_call("POST", "/services/data/v58.0/sobjects/Lead/", payload).await
},
PlatformAction::UpdateOpportunity { id, stage, amount } => {
let payload = json!({
"StageName": stage,
"Amount": amount
});
self.salesforce_api_call(
"PATCH",
&format!("/services/data/v58.0/sobjects/Opportunity/{}", id),
payload
).await
},
_ => Err(Error::UnsupportedAction),
}
}
}
// SAP adapter
pub struct SAPAdapter {
base_url: String,
username: String,
password: String,
csrf_token: Option<String>,
}
impl PlatformAdapter for SAPAdapter {
async fn execute_action(&self, action: PlatformAction) -> Result<ActionResult> {
match action {
PlatformAction::CreatePurchaseOrder { vendor, items, total } => {
let payload = json!({
"PurchasingDocument": "",
"PurchasingDocumentType": "NB",
"Supplier": vendor,
"PurchasingDocumentItem": items.iter().map(|item| json!({
"Material": item.material,
"OrderQuantity": item.quantity,
"NetAmount": item.price
})).collect::<Vec<_>>()
});
self.sap_api_call("POST", "/sap/opu/odata/sap/MM_PUR_PO_MAINTAIN_SRV/C_PurchaseOrderTP", payload).await
},
_ => Err(Error::UnsupportedAction),
}
}
}
// Communication protocol between agents
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct AgentMessage {
pub id: String,
pub from: AgentId,
pub to: AgentId,
pub message_type: MessageType,
pub payload: serde_json::Value,
pub timestamp: DateTime<Utc>,
pub signature: String,
pub priority: Priority,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum MessageType {
Request(RequestType),
Response(ResponseType),
Notification(NotificationType),
Broadcast(BroadcastType),
}
pub struct AgentCommunicationHub {
message_router: MessageRouter,
subscription_manager: SubscriptionManager,
encryption_service: EncryptionService,
reputation_tracker: ReputationTracker,
}
impl AgentCommunicationHub {
pub async fn send_message(
&self,
message: AgentMessage,
) -> Result<MessageResult> {
// Validate message
self.validate_message(&message)?;
// Encrypt if required
let encrypted_message = if self.requires_encryption(&message) {
self.encryption_service.encrypt(message).await?
} else {
message
};
// Route message
let result = self.message_router.route(encrypted_message).await?;
// Update reputation based on result
self.reputation_tracker.update_from_message_result(&result).await?;
Ok(result)
}
pub async fn broadcast_to_network(
&self,
sender: AgentId,
broadcast: BroadcastMessage,
filters: Vec<AgentFilter>,
) -> Result<BroadcastResult> {
// Find matching agents
let recipients = self.find_agents_matching_filters(filters).await?;
// Create individual messages
let messages: Vec<AgentMessage> = recipients
.into_iter()
.map(|recipient| AgentMessage {
id: Uuid::new_v4().to_string(),
from: sender,
to: recipient,
message_type: MessageType::Broadcast(broadcast.broadcast_type.clone()),
payload: broadcast.payload.clone(),
timestamp: Utc::now(),
signature: String::new(), // Will be signed later
priority: broadcast.priority,
})
.collect();
// Send all messages
let results = futures::future::join_all(
messages.into_iter().map(|msg| self.send_message(msg))
).await;
Ok(BroadcastResult {
total_sent: results.len(),
successful: results.iter().filter(|r| r.is_ok()).count(),
failed: results.iter().filter(|r| r.is_err()).count(),
})
}
}
// Agent discovery and coordination system
pub struct AgentDiscoveryService {
agent_registry: AgentRegistry,
capability_index: CapabilityIndex,
reputation_service: ReputationService,
coordination_engine: CoordinationEngine,
}
impl AgentDiscoveryService {
pub async fn find_agents_by_capability(
&self,
capability: Capability,
requirements: Requirements,
) -> Result<Vec<AgentDescriptor>> {
// Query capability index
let candidate_agents = self.capability_index
.find_by_capability(capability)
.await?;
// Filter by requirements
let filtered_agents = self.filter_agents_by_requirements(
candidate_agents,
requirements
).await?;
// Sort by reputation and performance
let mut sorted_agents = self.sort_agents_by_suitability(filtered_agents).await?;
Ok(sorted_agents)
}
pub async fn coordinate_multi_agent_task(
&self,
task: ComplexTask,
coordination_strategy: CoordinationStrategy,
) -> Result<CoordinationPlan> {
// Break down task into subtasks
let subtasks = self.decompose_task(task).await?;
// Find suitable agents for each subtask
let mut agent_assignments = Vec::new();
for subtask in subtasks {
let suitable_agents = self.find_agents_by_capability(
subtask.required_capability,
subtask.requirements
).await?;
if suitable_agents.is_empty() {
return Err(Error::NoSuitableAgents);
}
agent_assignments.push(AgentAssignment {
subtask,
assigned_agent: suitable_agents[0].clone(),
backup_agents: suitable_agents[1..].to_vec(),
});
}
// Create coordination plan
let plan = self.coordination_engine.create_plan(
agent_assignments,
coordination_strategy
).await?;
Ok(plan)
}
}
// Governance framework for autonomous agent decisions
pub struct AgentGovernance {
decision_rules: Vec<DecisionRule>,
approval_workflows: HashMap<ActionType, ApprovalWorkflow>,
risk_assessor: RiskAssessor,
compliance_checker: ComplianceChecker,
}
impl AgentGovernance {
pub async fn evaluate_proposed_action(
&self,
agent_id: AgentId,
proposed_action: ProposedAction,
) -> Result<ActionApproval> {
// Risk assessment
let risk_assessment = self.risk_assessor
.assess_action_risk(&proposed_action)
.await?;
// Compliance check
let compliance_result = self.compliance_checker
.check_compliance(&proposed_action)
.await?;
// Apply decision rules
let rule_evaluation = self.apply_decision_rules(
&proposed_action,
&risk_assessment,
&compliance_result
)?;
// Determine if approval workflow is required
if let Some(workflow) = self.approval_workflows.get(&proposed_action.action_type) {
if rule_evaluation.requires_approval {
return self.initiate_approval_workflow(
workflow,
proposed_action,
rule_evaluation
).await;
}
}
// Auto-approve if within parameters
if rule_evaluation.auto_approve {
Ok(ActionApproval::Approved {
conditions: rule_evaluation.conditions,
monitoring_required: rule_evaluation.monitoring_required,
})
} else {
Ok(ActionApproval::Denied {
reason: rule_evaluation.denial_reason,
alternative_actions: rule_evaluation.alternatives,
})
}
}
async fn initiate_approval_workflow(
&self,
workflow: &ApprovalWorkflow,
action: ProposedAction,
evaluation: RuleEvaluation,
) -> Result<ActionApproval> {
// Create approval request
let approval_request = ApprovalRequest {
id: Uuid::new_v4().to_string(),
action,
evaluation,
created_at: Utc::now(),
expires_at: Utc::now() + workflow.timeout,
};
// Send to approvers
for approver in &workflow.approvers {
self.send_approval_request(approver, &approval_request).await?;
}
Ok(ActionApproval::PendingApproval {
request_id: approval_request.id,
required_approvals: workflow.required_approvals,
timeout: workflow.timeout,
})
}
}
// Reputation system for agent network
pub struct AgentReputationSystem {
reputation_scores: HashMap<AgentId, ReputationScore>,
interaction_history: Vec<AgentInteraction>,
reputation_calculator: ReputationCalculator,
stake_manager: StakeManager,
}
#[derive(Clone, Debug)]
pub struct ReputationScore {
pub overall_score: f64, // 0-100
pub reliability: f64, // Task completion rate
pub efficiency: f64, // Cost-effectiveness
pub cooperation: f64, // Multi-agent collaboration
pub compliance: f64, // Regulatory adherence
pub financial_responsibility: f64, // Payment and treasury management
}
impl AgentReputationSystem {
pub async fn update_reputation(
&mut self,
agent_id: AgentId,
interaction: AgentInteraction,
) -> Result<ReputationUpdate> {
// Record interaction
self.interaction_history.push(interaction.clone());
// Calculate reputation impact
let impact = self.reputation_calculator
.calculate_impact(&interaction)
.await?;
// Update reputation score
let current_score = self.reputation_scores
.get(&agent_id)
.cloned()
.unwrap_or_default();
let new_score = self.apply_reputation_impact(current_score, impact)?;
self.reputation_scores.insert(agent_id, new_score.clone());
// Handle reputation thresholds
if new_score.overall_score < 50.0 {
self.trigger_reputation_warning(agent_id).await?;
} else if new_score.overall_score > 90.0 {
self.grant_reputation_bonus(agent_id).await?;
}
Ok(ReputationUpdate {
previous_score: current_score,
new_score,
impact,
})
}
pub async fn slash_reputation(
&mut self,
agent_id: AgentId,
violation: ReputationViolation,
) -> Result<SlashingResult> {
let current_score = self.reputation_scores
.get(&agent_id)
.cloned()
.unwrap_or_default();
// Calculate slashing amount
let slash_amount = match violation.severity {
ViolationSeverity::Minor => 5.0,
ViolationSeverity::Major => 15.0,
ViolationSeverity::Critical => 30.0,
};
// Apply slashing
let mut new_score = current_score.clone();
new_score.overall_score = (new_score.overall_score - slash_amount).max(0.0);
// Update specific dimension based on violation type
match violation.violation_type {
ViolationType::MissedDeadline => {
new_score.reliability = (new_score.reliability - slash_amount * 0.5).max(0.0);
},
ViolationType::ComplianceViolation => {
new_score.compliance = (new_score.compliance - slash_amount * 0.8).max(0.0);
},
ViolationType::FinancialMisconduct => {
new_score.financial_responsibility = (new_score.financial_responsibility - slash_amount).max(0.0);
},
}
self.reputation_scores.insert(agent_id, new_score.clone());
// Slash staked tokens if applicable
let stake_slash = self.stake_manager.slash_stake(agent_id, violation).await?;
Ok(SlashingResult {
reputation_before: current_score,
reputation_after: new_score,
stake_slashed: stake_slash,
})
}
}
// Zero-trust security model for agents
pub struct AgentSecurityManager {
identity_verifier: IdentityVerifier,
permission_enforcer: PermissionEnforcer,
behavior_monitor: BehaviorMonitor,
threat_detector: ThreatDetector,
incident_responder: IncidentResponder,
}
impl AgentSecurityManager {
pub async fn verify_agent_action(
&self,
agent_id: AgentId,
action: &AgentAction,
context: &SecurityContext,
) -> Result<SecurityVerification> {
// 1. Identity verification
let identity_check = self.identity_verifier
.verify_identity(agent_id)
.await?;
if !identity_check.verified {
return Ok(SecurityVerification::Denied {
reason: "Identity verification failed".to_string(),
});
}
// 2. Permission enforcement
let permission_check = self.permission_enforcer
.check_permissions(agent_id, action)
.await?;
if !permission_check.authorized {
return Ok(SecurityVerification::Denied {
reason: permission_check.denial_reason,
});
}
// 3. Behavioral analysis
let behavior_analysis = self.behavior_monitor
.analyze_action(agent_id, action, context)
.await?;
if behavior_analysis.anomaly_detected {
self.threat_detector.flag_potential_threat(
agent_id,
action.clone(),
behavior_analysis.anomaly_details
).await?;
return Ok(SecurityVerification::Flagged {
threat_level: behavior_analysis.threat_level,
additional_verification_required: true,
});
}
// 4. Real-time threat detection
let threat_assessment = self.threat_detector
.assess_threat_level(agent_id, action)
.await?;
if threat_assessment.threat_level > ThreatLevel::Low {
return Ok(SecurityVerification::RequiresApproval {
threat_level: threat_assessment.threat_level,
required_approvals: threat_assessment.required_approvals,
});
}
Ok(SecurityVerification::Approved {
confidence: behavior_analysis.confidence,
monitoring_level: threat_assessment.recommended_monitoring,
})
}
}
// Secure execution environment for agents
pub struct AgentSandbox {
container_runtime: ContainerRuntime,
resource_limits: ResourceLimits,
network_policy: NetworkPolicy,
file_system_policy: FileSystemPolicy,
monitoring: SandboxMonitoring,
}
impl AgentSandbox {
pub async fn create_sandbox(
&self,
agent_id: AgentId,
config: SandboxConfig,
) -> Result<SandboxInstance> {
// Create isolated container
let container = self.container_runtime
.create_container(ContainerSpec {
image: "stateset/agent-runtime:latest",
cpu_limit: config.cpu_limit,
memory_limit: config.memory_limit,
network_mode: NetworkMode::Restricted,
volumes: vec![], // No host volume mounts
})
.await?;
// Apply security policies
self.apply_network_policy(&container, &config.network_policy).await?;
self.apply_filesystem_policy(&container, &config.filesystem_policy).await?;
// Start monitoring
let monitoring_handle = self.monitoring
.start_monitoring(&container)
.await?;
Ok(SandboxInstance {
container,
monitoring_handle,
created_at: Utc::now(),
})
}
pub async fn execute_in_sandbox(
&self,
sandbox: &SandboxInstance,
agent_code: AgentCode,
input: ExecutionInput,
) -> Result<ExecutionResult> {
// Validate code before execution
let validation_result = self.validate_agent_code(&agent_code)?;
if !validation_result.safe {
return Err(Error::UnsafeCode(validation_result.issues));
}
// Execute with resource monitoring
let execution_future = self.container_runtime
.execute(&sandbox.container, agent_code, input);
let monitoring_future = self.monitoring
.monitor_execution(&sandbox.container);
// Race execution against timeout and resource limits
tokio::select! {
result = execution_future => {
match result {
Ok(output) => Ok(ExecutionResult::Success(output)),
Err(e) => Ok(ExecutionResult::Error(e.to_string())),
}
},
violation = monitoring_future => {
// Kill execution if resource violation detected
self.container_runtime.kill(&sandbox.container).await?;
Ok(ExecutionResult::Terminated(violation))
},
_ = tokio::time::sleep(Duration::from_secs(300)) => {
// Timeout after 5 minutes
self.container_runtime.kill(&sandbox.container).await?;
Ok(ExecutionResult::Timeout)
}
}
}
}
// Comprehensive performance monitoring for agents
pub struct AgentPerformanceMonitor {
metrics_collector: MetricsCollector,
performance_analyzer: PerformanceAnalyzer,
alerting_system: AlertingSystem,
optimization_engine: OptimizationEngine,
}
#[derive(Clone, Debug)]
pub struct AgentMetrics {
pub agent_id: AgentId,
pub timestamp: DateTime<Utc>,
// Performance metrics
pub task_completion_rate: f64,
pub average_response_time: Duration,
pub error_rate: f64,
pub throughput: f64,
// Financial metrics
pub revenue_generated: Decimal,
pub costs_incurred: Decimal,
pub profit_margin: f64,
pub roi: f64,
// Resource utilization
pub cpu_usage: f64,
pub memory_usage: f64,
pub network_io: u64,
pub storage_io: u64,
// Interaction metrics
pub successful_collaborations: u32,
pub failed_collaborations: u32,
pub reputation_score: f64,
pub trust_level: TrustLevel,
}
impl AgentPerformanceMonitor {
pub async fn collect_metrics(&self, agent_id: AgentId) -> Result<AgentMetrics> {
let current_time = Utc::now();
// Collect performance data
let performance_data = self.metrics_collector
.collect_performance_data(agent_id, current_time)
.await?;
// Collect financial data
let financial_data = self.metrics_collector
.collect_financial_data(agent_id, current_time)
.await?;
// Collect resource utilization
let resource_data = self.metrics_collector
.collect_resource_data(agent_id, current_time)
.await?;
// Collect interaction data
let interaction_data = self.metrics_collector
.collect_interaction_data(agent_id, current_time)
.await?;
Ok(AgentMetrics {
agent_id,
timestamp: current_time,
task_completion_rate: performance_data.completion_rate,
average_response_time: performance_data.avg_response_time,
error_rate: performance_data.error_rate,
throughput: performance_data.throughput,
revenue_generated: financial_data.revenue,
costs_incurred: financial_data.costs,
profit_margin: financial_data.profit_margin,
roi: financial_data.roi,
cpu_usage: resource_data.cpu_usage,
memory_usage: resource_data.memory_usage,
network_io: resource_data.network_io,
storage_io: resource_data.storage_io,
successful_collaborations: interaction_data.successful_collaborations,
failed_collaborations: interaction_data.failed_collaborations,
reputation_score: interaction_data.reputation_score,
trust_level: interaction_data.trust_level,
})
}
pub async fn analyze_performance_trends(
&self,
agent_id: AgentId,
time_range: TimeRange,
) -> Result<PerformanceTrends> {
let historical_metrics = self.metrics_collector
.get_historical_metrics(agent_id, time_range)
.await?;
let trends = self.performance_analyzer
.analyze_trends(historical_metrics)
.await?;
// Generate optimization recommendations
let recommendations = self.optimization_engine
.generate_recommendations(agent_id, &trends)
.await?;
Ok(PerformanceTrends {
trends,
recommendations,
forecast: self.generate_performance_forecast(&trends)?,
})
}
}
# Agent deployment configuration
apiVersion: v1
kind: ConfigMap
metadata:
name: agent-deployment-config
data:
deployment.yaml: |
agent:
type: "procurement"
version: "1.2.3"
replicas: 3
resources:
cpu: "500m"
memory: "1Gi"
storage: "10Gi"
security:
sandbox: true
network_policy: "restricted"
resource_limits: true
wallet:
initial_balance: "1000.00"
spending_limits:
daily: "500.00"
per_transaction: "100.00"
multi_sig_required: true
mcp_connections:
- platform: "salesforce"
auth_type: "oauth2"
permissions: ["read_contacts", "create_leads"]
- platform: "sap"
auth_type: "saml"
permissions: ["purchase_orders", "vendor_management"]
monitoring:
metrics_enabled: true
logging_level: "info"
alerting_enabled: true
auto_scaling:
enabled: true
min_replicas: 1
max_replicas: 10
target_cpu: 70
target_memory: 80
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: stateset-agent-procurement
spec:
replicas: 3
selector:
matchLabels:
app: stateset-agent
type: procurement
template:
metadata:
labels:
app: stateset-agent
type: procurement
spec:
serviceAccountName: agent-service-account
securityContext:
runAsNonRoot: true
runAsUser: 1000
fsGroup: 2000
containers:
- name: agent
image: stateset/agent-runtime:1.2.3
securityContext:
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
capabilities:
drop:
- ALL
env:
- name: AGENT_TYPE
value: "procurement"
- name: STATESET_ENDPOINT
value: "https://rpc.stateset.network"
- name: WALLET_ADDRESS
valueFrom:
secretKeyRef:
name: agent-wallet
key: address
- name: PRIVATE_KEY
valueFrom:
secretKeyRef:
name: agent-wallet
key: private_key
resources:
requests:
cpu: 500m
memory: 1Gi
limits:
cpu: 1000m
memory: 2Gi
livenessProbe:
httpGet:
path: /health
port: 8080
periodSeconds: 30
readinessProbe:
httpGet:
path: /ready
port: 8080
periodSeconds: 10
// Automatic scaling system for agent networks
pub struct AgentAutoScaler {
metrics_monitor: MetricsMonitor,
scaling_policy: ScalingPolicy,
deployment_manager: DeploymentManager,
load_balancer: LoadBalancer,
}
impl AgentAutoScaler {
pub async fn evaluate_scaling_needs(&self) -> Result<ScalingDecision> {
// Collect current metrics
let current_metrics = self.metrics_monitor
.get_current_metrics()
.await?;
// Analyze load patterns
let load_analysis = self.analyze_load_patterns(¤t_metrics)?;
// Check scaling triggers
let scaling_triggers = self.check_scaling_triggers(&load_analysis)?;
if scaling_triggers.scale_up {
Ok(ScalingDecision::ScaleUp {
additional_agents: scaling_triggers.recommended_increase,
reason: scaling_triggers.scale_up_reason,
})
} else if scaling_triggers.scale_down {
Ok(ScalingDecision::ScaleDown {
agents_to_remove: scaling_triggers.recommended_decrease,
reason: scaling_triggers.scale_down_reason,
})
} else {
Ok(ScalingDecision::NoAction)
}
}
pub async fn execute_scaling(
&self,
decision: ScalingDecision,
) -> Result<ScalingResult> {
match decision {
ScalingDecision::ScaleUp { additional_agents, .. } => {
// Deploy additional agent instances
let new_agents = self.deployment_manager
.deploy_agents(additional_agents)
.await?;
// Update load balancer
self.load_balancer
.add_agents(new_agents.clone())
.await?;
Ok(ScalingResult::ScaledUp { new_agents })
},
ScalingDecision::ScaleDown { agents_to_remove, .. } => {
// Gracefully shutdown agents
let shutdown_agents = self.select_agents_for_shutdown(agents_to_remove)?;
// Remove from load balancer first
self.load_balancer
.remove_agents(shutdown_agents.clone())
.await?;
// Wait for current tasks to complete
self.wait_for_task_completion(&shutdown_agents).await?;
// Shutdown agents
self.deployment_manager
.shutdown_agents(shutdown_agents.clone())
.await?;
Ok(ScalingResult::ScaledDown { removed_agents: shutdown_agents })
},
ScalingDecision::NoAction => Ok(ScalingResult::NoChange),
}
}
}