Inventory Management Quickstart Guide
Learn how to build a sophisticated inventory management system using the Stateset API. This guide covers everything from basic stock tracking to advanced demand forecasting and multi-location inventory optimization.
Table of Contents
Introduction
Core Concepts
Setting Up Your Environment
Advanced API Usage
Inventory Optimization Strategies
Error Handling and Logging
Webhooks and Real-time Updates
Performance Optimization
Security Best Practices
Troubleshooting
Introduction
Stateset One provides a powerful REST and GraphQL API for advanced Inventory Management. This guide will dive deep into the intricacies of the Inventory module, exploring advanced features and best practices for efficient inventory management.
Key Objects in the Inventory Module:
Inventory Items
Packing Lists
Packing List Items
Shipments
Orders
Core Concepts
Before we dive into the implementation, let’s review some core concepts and challenges in inventory management:
Inventory Management Processes:
Receiving Inventory
Picking Inventory
Shipping Inventory
Adjusting Inventory
Cycle Counting
Inventory Forecasting
Common Challenges:
Multi-warehouse management
Just-in-time (JIT) inventory
Demand forecasting
Stock-out prevention
Overstock mitigation
Inventory shrinkage
Supplier management
Stateset’s Solutions:
Real-time inventory tracking
Multi-location support
Advanced forecasting algorithms
Automated reorder points
Supplier performance metrics
Integration with ERP and e-commerce platforms
Prerequisites
Before you begin, ensure you have:
A Stateset account (Sign up here )
API credentials from Stateset Cloud Console
Node.js 16+ installed
Basic understanding of inventory management concepts
Access to your warehouse/fulfillment systems (if integrating)
Setting Up Your Environment
Install Dependencies
Install the required packages:
npm install stateset-node node-cron lodash moment
# or
yarn add stateset-node node-cron lodash moment
Configure Environment
Create your environment configuration:
# .env file
STATESET_API_KEY = your_api_key_here
STATESET_ENVIRONMENT = production
# Warehouse Configuration
DEFAULT_LOCATION = warehouse_001
REORDER_NOTIFICATION_EMAIL = ops@yourcompany.com
# Integration Settings
ERP_SYNC_ENABLED = true
SHOPIFY_STORE_URL = your-store.myshopify.com
Initialize Inventory Manager
Create a robust inventory management client:
import { StateSetClient } from 'stateset-node' ;
import cron from 'node-cron' ;
import _ from 'lodash' ;
import moment from 'moment' ;
class InventoryManager {
constructor ( apiKey ) {
this . client = new StateSetClient ({
apiKey ,
timeout: 30000 ,
maxRetries: 3
});
this . cache = new Map ();
this . setupAutomation ();
}
async initialize () {
try {
await this . client . health . check ();
console . log ( '✅ Inventory Manager initialized' );
// Set up scheduled tasks
this . scheduleInventoryTasks ();
return true ;
} catch ( error ) {
console . error ( '❌ Initialization failed:' , error . message );
throw error ;
}
}
setupAutomation () {
// Auto-reorder monitoring
cron . schedule ( '0 */6 * * *' , () => {
this . checkReorderPoints ();
});
// Inventory sync with external systems
cron . schedule ( '*/15 * * * *' , () => {
this . syncInventoryLevels ();
});
// Daily inventory reports
cron . schedule ( '0 9 * * *' , () => {
this . generateDailyReport ();
});
}
}
// Initialize the manager
const inventoryManager = new InventoryManager ( process . env . STATESET_API_KEY );
await inventoryManager . initialize ();
Advanced API Usage
Creating and Managing Inventory Items
// Create a new Inventory Item
const newItem = await client . inventoryitems . create ({
upc: '123456789012' ,
sku: 'WIDGET-001' ,
name: 'Super Widget' ,
description: 'A high-quality widget' ,
category: 'Electronics' ,
subcategory: 'Gadgets' ,
price: 29.99 ,
cost: 15.00 ,
weight: 0.5 ,
dimensions: { length: 5 , width: 3 , height: 2 },
reorder_point: 100 ,
lead_time: 14 // days
});
// Update an Inventory Item
const updatedItem = await client . inventoryitems . update ( 'ii_ODkRWQtx9NVsRX' , {
price: 34.99 ,
reorder_point: 150
});
// Get Inventory Item details
const itemDetails = await client . inventoryitems . get ( 'ii_ODkRWQtx9NVsRX' );
// List Inventory Items with pagination and filtering
const inventoryList = await client . inventoryitems . list ({
limit: 100 ,
offset: 0 ,
category: 'Electronics' ,
in_stock: true
});
Managing Packing Lists and Items
// Create a Packing List
const packingList = await client . packinglists . create ({
supplier_id: 'sup_123456' ,
expected_delivery_date: '2024-10-01' ,
status: 'pending'
});
// Add items to the Packing List
const packingListItem = await client . packinglistitems . create ({
packing_list_id: packingList . id ,
inventory_item_id: 'ii_ODkRWQtx9NVsRX' ,
quantity: 500
});
// Update Packing List status
const updatedPackingList = await client . packinglists . update ( packingList . id , {
status: 'in_transit'
});
// Process arrived Packing List
async function processArrivedPackingList ( packingListId ) {
const packingList = await client . packinglists . get ( packingListId );
const items = await client . packinglistitems . list ({ packing_list_id: packingListId });
for ( const item of items ) {
await updateInventoryCounts ( item );
}
await client . packinglists . update ( packingListId , { status: 'received' });
}
async function updateInventoryCounts ( packingListItem ) {
const inventoryItem = await client . inventoryitems . get ( packingListItem . inventory_item_id );
const updatedInventory = await client . inventoryitems . update ( inventoryItem . id , {
incoming: inventoryItem . incoming - packingListItem . quantity ,
available: inventoryItem . available + packingListItem . quantity ,
warehouse: inventoryItem . warehouse + packingListItem . quantity
});
await client . packinglistitems . update ( packingListItem . id , { arrived: true });
}
Inventory Optimization Strategies
Implement ABC Analysis:
Categorize inventory items based on their value and turnover rate.
async function performABCAnalysis () {
const items = await client . inventoryitems . list ({ limit: 1000 });
const totalValue = items . reduce (( sum , item ) => sum + item . price * item . available , 0 );
const categorizedItems = items . map ( item => ({
... item ,
value: item . price * item . available ,
percentageOfTotal: ( item . price * item . available ) / totalValue * 100
})). sort (( a , b ) => b . value - a . value );
let cumulativePercentage = 0 ;
const abcCategories = categorizedItems . map ( item => {
cumulativePercentage += item . percentageOfTotal ;
if ( cumulativePercentage <= 80 ) return { ... item , category: 'A' };
if ( cumulativePercentage <= 95 ) return { ... item , category: 'B' };
return { ... item , category: 'C' };
});
// Update items with their ABC category
for ( const item of abcCategories ) {
await client . inventoryitems . update ( item . id , { abc_category: item . category });
}
}
Implement Economic Order Quantity (EOQ):
Calculate the optimal order quantity to minimize total inventory costs.
function calculateEOQ ( demand , orderCost , holdingCost ) {
return Math . sqrt (( 2 * demand * orderCost ) / holdingCost );
}
async function updateEOQForItems () {
const items = await client . inventoryitems . list ({ limit: 1000 });
for ( const item of items ) {
const annualDemand = await getAnnualDemand ( item . id );
const orderCost = 50 ; // Assume $50 per order
const holdingCost = item . price * 0.2 ; // Assume 20% of item price as annual holding cost
const eoq = calculateEOQ ( annualDemand , orderCost , holdingCost );
await client . inventoryitems . update ( item . id , { economic_order_quantity: Math . round ( eoq ) });
}
}
Error Handling and Logging
Implement robust error handling and logging to ensure smooth operation of your inventory management system.
async function safeInventoryOperation ( operation ) {
try {
const result = await operation ();
console . log ( `Operation successful: ${ JSON . stringify ( result ) } ` );
return result ;
} catch ( error ) {
console . error ( `Error in inventory operation: ${ error . message } ` );
// Log to external logging service
await logToExternalService ({
level: 'error' ,
message: error . message ,
stack: error . stack ,
timestamp: new Date (). toISOString ()
});
throw error ;
}
}
// Usage
const newItem = await safeInventoryOperation (() =>
client . inventoryitems . create ({
upc: '123456789012' ,
name: 'Super Widget'
})
);
Webhooks and Real-time Updates
Configure webhooks to receive real-time updates about inventory changes.
Set up a webhook endpoint in your application.
Register the webhook in the Stateset Console.
Process incoming webhook events:
import express from 'express' ;
const app = express ();
app . post ( '/webhook/inventory' , express . json (), ( req , res ) => {
const event = req . body ;
switch ( event . type ) {
case 'inventory.updated' :
handleInventoryUpdate ( event . data );
break ;
case 'packing_list.received' :
handlePackingListReceived ( event . data );
break ;
// Handle other event types
}
res . sendStatus ( 200 );
});
function handleInventoryUpdate ( data ) {
// Update local cache, notify relevant systems, etc.
}
function handlePackingListReceived ( data ) {
// Trigger inventory count updates, notify warehouse staff, etc.
}
Implement caching for frequently accessed inventory data.
Use bulk operations for updating multiple items.
Implement pagination for large data sets.
import NodeCache from 'node-cache' ;
const cache = new NodeCache ({ stdTTL: 600 }); // Cache for 10 minutes
async function getInventoryItem ( id ) {
const cachedItem = cache . get ( id );
if ( cachedItem ) return cachedItem ;
const item = await client . inventoryitems . get ( id );
cache . set ( id , item );
return item ;
}
async function bulkUpdateInventory ( updates ) {
const bulkOperations = updates . map ( update => ({
id: update . id ,
changes: { quantity: update . newQuantity }
}));
return await client . inventoryitems . bulkUpdate ( bulkOperations );
}
Security Best Practices
Use environment variables for API keys.
Implement API request signing for added security.
Use HTTPS for all API communications.
Implement proper access controls and user permissions in your application.
Real-World Inventory Scenarios
Scenario 1: Multi-Location Inventory Management
Manage inventory across multiple warehouses and retail locations:
class MultiLocationInventoryManager extends InventoryManager {
constructor ( apiKey ) {
super ( apiKey );
this . locations = new Map ();
}
async setupLocations () {
const locations = await this . client . locations . list ();
locations . forEach ( location => {
this . locations . set ( location . id , {
... location ,
inventory: new Map (),
reorderRules: new Map ()
});
});
}
/**
* Real-time inventory allocation across locations
*/
async allocateInventoryOptimally ( orderItems , customerLocation ) {
const allocations = [];
for ( const item of orderItems ) {
const allocation = await this . findBestAllocation ( item , customerLocation );
allocations . push ( allocation );
}
return allocations ;
}
async findBestAllocation ( item , customerLocation ) {
// Get inventory levels across all locations
const inventoryLevels = await this . getInventoryLevels ( item . sku );
// Calculate shipping costs and delivery times
const locationScores = await Promise . all (
Array . from ( this . locations . keys ()). map ( async ( locationId ) => {
const available = inventoryLevels . get ( locationId ) || 0 ;
if ( available < item . quantity ) {
return { locationId , score: 0 , available: 0 };
}
const shippingCost = await this . calculateShippingCost ( locationId , customerLocation );
const deliveryTime = await this . estimateDeliveryTime ( locationId , customerLocation );
const distanceScore = this . calculateDistanceScore ( locationId , customerLocation );
// Weighted scoring: 40% cost, 40% speed, 20% distance
const score = (
( 1 - shippingCost / 100 ) * 0.4 +
( 1 - deliveryTime / 7 ) * 0.4 +
distanceScore * 0.2
);
return {
locationId ,
score ,
available ,
shippingCost ,
deliveryTime
};
})
);
// Select the best location
const bestLocation = locationScores
. filter ( loc => loc . available >= item . quantity )
. sort (( a , b ) => b . score - a . score )[ 0 ];
if ( ! bestLocation ) {
// Try split allocation
return await this . attemptSplitAllocation ( item , locationScores );
}
// Reserve inventory
await this . reserveInventory ( bestLocation . locationId , item . sku , item . quantity );
return {
sku: item . sku ,
quantity: item . quantity ,
location: bestLocation . locationId ,
estimated_cost: bestLocation . shippingCost ,
estimated_delivery: bestLocation . deliveryTime
};
}
async attemptSplitAllocation ( item , locationScores ) {
const allocations = [];
let remainingQuantity = item . quantity ;
// Sort by score and try to fulfill from multiple locations
const sortedLocations = locationScores
. filter ( loc => loc . available > 0 )
. sort (( a , b ) => b . score - a . score );
for ( const location of sortedLocations ) {
if ( remainingQuantity <= 0 ) break ;
const allocateQuantity = Math . min ( remainingQuantity , location . available );
await this . reserveInventory ( location . locationId , item . sku , allocateQuantity );
allocations . push ({
sku: item . sku ,
quantity: allocateQuantity ,
location: location . locationId ,
estimated_cost: location . shippingCost ,
estimated_delivery: location . deliveryTime
});
remainingQuantity -= allocateQuantity ;
}
if ( remainingQuantity > 0 ) {
throw new Error ( `Insufficient inventory for ${ item . sku } . Need ${ remainingQuantity } more units.` );
}
return allocations ;
}
}
Scenario 2: Demand Forecasting & Auto-Replenishment
Implement intelligent demand forecasting and automated reordering:
class DemandForecastingManager {
constructor ( inventoryManager ) {
this . inventory = inventoryManager ;
this . historicalData = new Map ();
this . forecastModels = new Map ();
}
/**
* Machine learning-based demand forecasting
*/
async generateDemandForecast ( sku , forecastPeriodDays = 30 ) {
// Collect historical sales data
const salesHistory = await this . getSalesHistory ( sku , 365 ); // Last year
const seasonalFactors = await this . calculateSeasonalFactors ( sku );
const trendAnalysis = this . analyzeTrend ( salesHistory );
// Apply different forecasting models
const forecasts = {
movingAverage: this . calculateMovingAverage ( salesHistory , 30 ),
exponentialSmoothing: this . calculateExponentialSmoothing ( salesHistory ),
linearRegression: this . calculateLinearRegression ( salesHistory ),
seasonal: this . calculateSeasonalForecast ( salesHistory , seasonalFactors )
};
// Ensemble forecast (weighted average of models)
const weights = {
movingAverage: 0.2 ,
exponentialSmoothing: 0.3 ,
linearRegression: 0.25 ,
seasonal: 0.25
};
const ensembleForecast = Object . keys ( forecasts ). reduce (( total , model ) => {
return total + ( forecasts [ model ] * weights [ model ]);
}, 0 );
// Apply trend and seasonal adjustments
const adjustedForecast = ensembleForecast * trendAnalysis . factor * seasonalFactors . current ;
// Calculate forecast confidence interval
const confidence = this . calculateConfidenceInterval ( salesHistory , adjustedForecast );
return {
sku ,
forecastPeriodDays ,
predictedDemand: Math . round ( adjustedForecast ),
confidence ,
models: forecasts ,
trend: trendAnalysis ,
seasonalFactor: seasonalFactors . current ,
generatedAt: new Date ()
};
}
/**
* Automated reorder point calculation
*/
async calculateOptimalReorderPoint ( sku ) {
const forecast = await this . generateDemandForecast ( sku , 30 );
const leadTime = await this . getSupplierLeadTime ( sku );
const serviceLevel = 0.95 ; // 95% service level
// Lead time demand
const leadTimeDemand = ( forecast . predictedDemand / 30 ) * leadTime ;
// Safety stock calculation
const demandVariability = this . calculateDemandVariability ( sku );
const leadTimeVariability = await this . getLeadTimeVariability ( sku );
const safetyStock = this . calculateSafetyStock (
serviceLevel ,
demandVariability ,
leadTimeVariability ,
leadTime
);
const reorderPoint = leadTimeDemand + safetyStock ;
// Update inventory item with new reorder point
await this . inventory . client . inventory . update ( sku , {
reorder_point: Math . ceil ( reorderPoint ),
safety_stock: Math . ceil ( safetyStock ),
lead_time_days: leadTime ,
last_forecast_update: new Date ()
});
return {
sku ,
reorderPoint: Math . ceil ( reorderPoint ),
safetyStock: Math . ceil ( safetyStock ),
leadTimeDemand: Math . ceil ( leadTimeDemand ),
forecast
};
}
/**
* Auto-replenishment workflow
*/
async executeAutoReplenishment () {
const itemsNeedingReorder = await this . inventory . client . inventory . list ({
available_quantity_lte: 'reorder_point' ,
auto_reorder_enabled: true
});
const replenishmentOrders = [];
for ( const item of itemsNeedingReorder ) {
try {
const reorderCalculation = await this . calculateOptimalOrderQuantity ( item . sku );
// Create purchase order
const purchaseOrder = await this . createPurchaseOrder ({
supplier_id: item . primary_supplier_id ,
items: [{
sku: item . sku ,
quantity: reorderCalculation . orderQuantity ,
unit_cost: item . unit_cost
}],
requested_delivery_date: moment (). add ( item . lead_time_days , 'days' ). toDate (),
priority: this . calculateOrderPriority ( item , reorderCalculation )
});
replenishmentOrders . push ( purchaseOrder );
// Update inventory to reflect incoming stock
await this . inventory . client . inventory . update ( item . sku , {
incoming_quantity: item . incoming_quantity + reorderCalculation . orderQuantity ,
last_reorder_date: new Date (),
next_reorder_check: moment (). add ( 7 , 'days' ). toDate ()
});
// Log the auto-replenishment action
await this . logReplenishmentAction ( item . sku , reorderCalculation , purchaseOrder );
} catch ( error ) {
console . error ( `Auto-replenishment failed for ${ item . sku } :` , error . message );
await this . notifyReplenishmentFailure ( item . sku , error );
}
}
// Send summary report
if ( replenishmentOrders . length > 0 ) {
await this . sendReplenishmentSummary ( replenishmentOrders );
}
return replenishmentOrders ;
}
calculateOptimalOrderQuantity ( sku ) {
// Economic Order Quantity (EOQ) calculation
const annualDemand = this . getAnnualDemand ( sku );
const orderingCost = this . getOrderingCost ( sku );
const holdingCost = this . getHoldingCost ( sku );
const eoq = Math . sqrt (( 2 * annualDemand * orderingCost ) / holdingCost );
// Consider supplier constraints
const supplierConstraints = this . getSupplierConstraints ( sku );
const finalQuantity = this . applySupplierConstraints ( eoq , supplierConstraints );
return {
economicOrderQuantity: Math . ceil ( eoq ),
orderQuantity: finalQuantity ,
annualDemand ,
totalCost: this . calculateTotalCost ( finalQuantity , annualDemand , orderingCost , holdingCost )
};
}
}
Scenario 3: Inventory Cycle Counting & Accuracy
Implement automated cycle counting and inventory accuracy tracking:
class InventoryAccuracyManager {
constructor ( inventoryManager ) {
this . inventory = inventoryManager ;
this . cycleCountSchedule = new Map ();
}
/**
* Generate cycle count schedule based on ABC analysis
*/
async generateCycleCountSchedule () {
const items = await this . inventory . client . inventory . list ();
const abcClassification = await this . performABCAnalysis ( items );
const schedule = new Map ();
// A items: Count monthly
// B items: Count quarterly
// C items: Count annually
const frequencies = {
A: 30 , // days
B: 90 ,
C: 365
};
abcClassification . forEach (( classification , sku ) => {
const frequency = frequencies [ classification . category ];
const nextCountDate = moment (). add ( frequency , 'days' ). toDate ();
schedule . set ( sku , {
category: classification . category ,
frequency ,
nextCountDate ,
priority: classification . category === 'A' ? 'high' :
classification . category === 'B' ? 'medium' : 'low'
});
});
this . cycleCountSchedule = schedule ;
return schedule ;
}
/**
* Execute cycle count for specific items
*/
async executeCycleCount ( skuList , countedBy ) {
const cycleCountResults = [];
for ( const sku of skuList ) {
try {
// Get current system quantity
const inventoryItem = await this . inventory . client . inventory . get ( sku );
const systemQuantity = inventoryItem . available_quantity ;
// Initiate count (in real implementation, this would interface with warehouse systems)
const countResult = await this . initiatePhysicalCount ( sku );
const variance = countResult . physicalQuantity - systemQuantity ;
const variancePercentage = Math . abs ( variance ) / systemQuantity * 100 ;
const result = {
sku ,
systemQuantity ,
physicalQuantity: countResult . physicalQuantity ,
variance ,
variancePercentage ,
countDate: new Date (),
countedBy ,
location: countResult . location ,
status: this . determineVarianceStatus ( variancePercentage )
};
// Update system if variance is within acceptable range
if ( variancePercentage <= 2 ) { // 2% tolerance
await this . adjustInventoryQuantity ( sku , variance , `Cycle count adjustment - ${ result . status } ` );
result . adjusted = true ;
} else {
// Flag for investigation
await this . flagForInvestigation ( sku , result );
result . adjusted = false ;
}
cycleCountResults . push ( result );
// Update next count date
const scheduleItem = this . cycleCountSchedule . get ( sku );
if ( scheduleItem ) {
scheduleItem . nextCountDate = moment (). add ( scheduleItem . frequency , 'days' ). toDate ();
scheduleItem . lastCountDate = new Date ();
}
} catch ( error ) {
console . error ( `Cycle count failed for ${ sku } :` , error . message );
cycleCountResults . push ({
sku ,
error: error . message ,
status: 'failed'
});
}
}
// Generate cycle count report
await this . generateCycleCountReport ( cycleCountResults );
return cycleCountResults ;
}
/**
* Track inventory accuracy metrics
*/
async calculateInventoryAccuracyMetrics ( period = 30 ) {
const startDate = moment (). subtract ( period , 'days' ). toDate ();
// Get all cycle counts in the period
const cycleCounts = await this . inventory . client . cycleCounts . list ({
date_after: startDate
});
const metrics = {
totalCounts: cycleCounts . length ,
accuratecounts: 0 ,
totalVariance: 0 ,
totalValue: 0 ,
byCategory: { A: {}, B: {}, C: {} },
byLocation: new Map (),
trends: []
};
cycleCounts . forEach ( count => {
const isAccurate = Math . abs ( count . variancePercentage ) <= 2 ;
if ( isAccurate ) metrics . accurateCount ++ ;
metrics . totalVariance += Math . abs ( count . variance );
metrics . totalValue += count . systemQuantity * count . unitCost ;
// Track by ABC category
const category = this . getItemCategory ( count . sku );
if ( ! metrics . byCategory [ category ]. count ) {
metrics . byCategory [ category ] = { count: 0 , accurate: 0 };
}
metrics . byCategory [ category ]. count ++ ;
if ( isAccurate ) metrics . byCategory [ category ]. accurate ++ ;
// Track by location
if ( ! metrics . byLocation . has ( count . location )) {
metrics . byLocation . set ( count . location , { count: 0 , accurate: 0 });
}
const locationMetric = metrics . byLocation . get ( count . location );
locationMetric . count ++ ;
if ( isAccurate ) locationMetric . accurate ++ ;
});
// Calculate accuracy percentages
metrics . overallAccuracy = ( metrics . accurateCount / metrics . totalCounts ) * 100 ;
Object . keys ( metrics . byCategory ). forEach ( category => {
const catMetric = metrics . byCategory [ category ];
if ( catMetric . count > 0 ) {
catMetric . accuracy = ( catMetric . accurate / catMetric . count ) * 100 ;
}
});
metrics . byLocation . forEach (( locationMetric , location ) => {
locationMetric . accuracy = ( locationMetric . accurate / locationMetric . count ) * 100 ;
});
return metrics ;
}
}
Scenario 4: Seasonal Inventory Planning
Handle seasonal demand patterns and inventory planning:
class SeasonalInventoryPlanner {
constructor ( inventoryManager ) {
this . inventory = inventoryManager ;
this . seasonalPatterns = new Map ();
}
/**
* Analyze historical seasonal patterns
*/
async analyzeSeasonalPatterns ( sku , yearsOfHistory = 3 ) {
const salesData = await this . getSalesData ( sku , yearsOfHistory );
// Group by month
const monthlyData = _ . groupBy ( salesData , sale => moment ( sale . date ). month ());
// Calculate seasonal indices
const seasonalIndices = {};
const averageMonthlySales = _ . mean ( Object . values ( monthlyData ). map ( month => _ . sumBy ( month , 'quantity' )));
Object . keys ( monthlyData ). forEach ( month => {
const monthSales = _ . sumBy ( monthlyData [ month ], 'quantity' );
seasonalIndices [ month ] = monthSales / averageMonthlySales ;
});
// Identify peak seasons
const peakSeasons = Object . keys ( seasonalIndices )
. filter ( month => seasonalIndices [ month ] > 1.2 )
. map ( month => ({
month: parseInt ( month ),
monthName: moment (). month ( month ). format ( 'MMMM' ),
index: seasonalIndices [ month ]
}));
const pattern = {
sku ,
seasonalIndices ,
peakSeasons ,
isHighlySeasonal: Math . max ( ... Object . values ( seasonalIndices )) > 1.5 ,
volatility: this . calculateVolatility ( Object . values ( seasonalIndices ))
};
this . seasonalPatterns . set ( sku , pattern );
return pattern ;
}
/**
* Generate seasonal inventory plan
*/
async generateSeasonalPlan ( sku , planningHorizon = 12 ) {
const pattern = await this . analyzeSeasonalPatterns ( sku );
const baseForecast = await this . inventory . demandForecasting . generateDemandForecast ( sku , 30 );
const monthlyPlan = [];
const currentMonth = moment (). month ();
for ( let i = 0 ; i < planningHorizon ; i ++ ) {
const planMonth = ( currentMonth + i ) % 12 ;
const seasonalIndex = pattern . seasonalIndices [ planMonth ] || 1 ;
const adjustedForecast = baseForecast . predictedDemand * seasonalIndex ;
const leadTime = await this . inventory . getSupplierLeadTime ( sku );
// Calculate when to place order for this month's demand
const orderDate = moment (). add ( i , 'months' ). subtract ( leadTime , 'days' );
monthlyPlan . push ({
month: planMonth ,
monthName: moment (). month ( planMonth ). format ( 'MMMM' ),
year: moment (). add ( i , 'months' ). year (),
forecastDemand: Math . round ( adjustedForecast ),
seasonalIndex ,
recommendedOrderQuantity: this . calculateSeasonalOrderQuantity ( sku , adjustedForecast , seasonalIndex ),
recommendedOrderDate: orderDate . toDate (),
estimatedInventoryLevel: 0 // To be calculated
});
}
// Calculate running inventory levels
let runningInventory = await this . getCurrentInventoryLevel ( sku );
monthlyPlan . forEach (( month , index ) => {
if ( moment ( month . recommendedOrderDate ). isBefore ( moment (). add ( index , 'months' ))) {
runningInventory += month . recommendedOrderQuantity ;
}
runningInventory -= month . forecastDemand ;
month . estimatedInventoryLevel = runningInventory ;
// Flag potential stockouts
if ( runningInventory < 0 ) {
month . stockoutRisk = true ;
month . stockoutQuantity = Math . abs ( runningInventory );
}
});
return {
sku ,
planningHorizon ,
seasonalPattern: pattern ,
monthlyPlan ,
summary: {
totalDemand: _ . sumBy ( monthlyPlan , 'forecastDemand' ),
totalOrders: _ . sumBy ( monthlyPlan , 'recommendedOrderQuantity' ),
stockoutRiskMonths: monthlyPlan . filter ( m => m . stockoutRisk ). length
}
};
}
/**
* Pre-season inventory buildup
*/
async executePreSeasonBuildup ( sku , targetMonth , bufferWeeks = 4 ) {
const seasonalPlan = await this . generateSeasonalPlan ( sku );
const targetMonthPlan = seasonalPlan . monthlyPlan . find ( m => m . month === targetMonth );
if ( ! targetMonthPlan ) {
throw new Error ( `No plan found for month ${ targetMonth } ` );
}
const buildupStartDate = moment (). month ( targetMonth ). subtract ( bufferWeeks , 'weeks' );
const currentInventory = await this . getCurrentInventoryLevel ( sku );
// Calculate required buildup quantity
const peakDemand = targetMonthPlan . forecastDemand ;
const requiredInventory = peakDemand * 1.2 ; // 20% buffer
const buildupRequired = Math . max ( 0 , requiredInventory - currentInventory );
if ( buildupRequired > 0 ) {
// Create advance purchase order
const purchaseOrder = await this . createAdvancePurchaseOrder ({
sku ,
quantity: buildupRequired ,
requestedDeliveryDate: buildupStartDate . toDate (),
reason: `Pre-season buildup for ${ targetMonthPlan . monthName } ` ,
priority: 'high'
});
// Update seasonal plan tracking
await this . updateSeasonalPlanExecution ( sku , targetMonth , {
buildupOrderId: purchaseOrder . id ,
buildupQuantity: buildupRequired ,
buildupDate: new Date ()
});
return {
buildupRequired ,
purchaseOrder ,
estimatedReadiness: buildupStartDate . toDate ()
};
}
return {
buildupRequired: 0 ,
message: 'Sufficient inventory for peak season'
};
}
}
Advanced Testing Examples
Create comprehensive tests for your inventory management system:
import { describe , it , beforeEach , afterEach } from 'mocha' ;
import { expect } from 'chai' ;
import sinon from 'sinon' ;
describe ( 'Inventory Management System' , () => {
let inventoryManager ;
let mockClient ;
beforeEach ( async () => {
mockClient = {
inventory: {
get: sinon . stub (),
update: sinon . stub (),
list: sinon . stub ()
},
locations: {
list: sinon . stub ()
}
};
inventoryManager = new MultiLocationInventoryManager ( 'test-key' );
inventoryManager . client = mockClient ;
});
describe ( 'Multi-location allocation' , () => {
it ( 'should allocate from closest location when sufficient inventory' , async () => {
// Setup test data
mockClient . inventory . list . resolves ([
{ location_id: 'warehouse_1' , sku: 'TEST-001' , available_quantity: 100 },
{ location_id: 'warehouse_2' , sku: 'TEST-001' , available_quantity: 50 }
]);
const orderItem = { sku: 'TEST-001' , quantity: 10 };
const customerLocation = { lat: 40.7128 , lng: - 74.0060 }; // NYC
const allocation = await inventoryManager . findBestAllocation ( orderItem , customerLocation );
expect ( allocation ). to . have . property ( 'sku' , 'TEST-001' );
expect ( allocation ). to . have . property ( 'quantity' , 10 );
expect ( allocation ). to . have . property ( 'location' );
});
it ( 'should split allocation across multiple locations when needed' , async () => {
mockClient . inventory . list . resolves ([
{ location_id: 'warehouse_1' , sku: 'TEST-001' , available_quantity: 5 },
{ location_id: 'warehouse_2' , sku: 'TEST-001' , available_quantity: 8 }
]);
const orderItem = { sku: 'TEST-001' , quantity: 10 };
const customerLocation = { lat: 40.7128 , lng: - 74.0060 };
const allocation = await inventoryManager . attemptSplitAllocation ( orderItem , [
{ locationId: 'warehouse_1' , available: 5 , score: 0.8 },
{ locationId: 'warehouse_2' , available: 8 , score: 0.7 }
]);
expect ( allocation ). to . be . an ( 'array' );
expect ( allocation ). to . have . length ( 2 );
expect ( allocation . reduce (( sum , alloc ) => sum + alloc . quantity , 0 )). to . equal ( 10 );
});
});
describe ( 'Demand forecasting' , () => {
it ( 'should generate accurate demand forecast using multiple models' , async () => {
const demandForecaster = new DemandForecastingManager ( inventoryManager );
// Mock historical sales data
sinon . stub ( demandForecaster , 'getSalesHistory' ). resolves ([
{ date: '2024-01-01' , quantity: 100 },
{ date: '2024-01-02' , quantity: 110 },
{ date: '2024-01-03' , quantity: 95 }
// ... more data
]);
const forecast = await demandForecaster . generateDemandForecast ( 'TEST-001' , 30 );
expect ( forecast ). to . have . property ( 'sku' , 'TEST-001' );
expect ( forecast ). to . have . property ( 'predictedDemand' );
expect ( forecast . predictedDemand ). to . be . a ( 'number' );
expect ( forecast ). to . have . property ( 'confidence' );
expect ( forecast . confidence ). to . be . within ( 0 , 1 );
});
});
describe ( 'Cycle counting' , () => {
it ( 'should adjust inventory when variance is within tolerance' , async () => {
const accuracyManager = new InventoryAccuracyManager ( inventoryManager );
mockClient . inventory . get . resolves ({
sku: 'TEST-001' ,
available_quantity: 100
});
sinon . stub ( accuracyManager , 'initiatePhysicalCount' ). resolves ({
physicalQuantity: 98 ,
location: 'warehouse_1'
});
const results = await accuracyManager . executeCycleCount ([ 'TEST-001' ], 'test-user' );
expect ( results ). to . have . length ( 1 );
expect ( results [ 0 ]). to . have . property ( 'adjusted' , true );
expect ( results [ 0 ]. variance ). to . equal ( - 2 );
expect ( results [ 0 ]. variancePercentage ). to . equal ( 2 );
});
});
});
// Performance testing
describe ( 'Performance Tests' , () => {
it ( 'should handle bulk inventory updates efficiently' , async () => {
const startTime = Date . now ();
const updates = Array . from ({ length: 1000 }, ( _ , i ) => ({
sku: `TEST- ${ i . toString (). padStart ( 3 , '0' ) } ` ,
quantity: Math . floor ( Math . random () * 100 )
}));
await inventoryManager . bulkUpdateInventory ( updates );
const endTime = Date . now ();
const duration = endTime - startTime ;
expect ( duration ). to . be . below ( 5000 ); // Should complete within 5 seconds
});
});
Best Practices Summary
Real-time Tracking : Use webhooks for immediate inventory updates
Demand Forecasting : Implement multiple forecasting models for accuracy
Multi-location Optimization : Consider shipping costs and delivery times
Automated Reordering : Set up intelligent reorder points based on demand patterns
Cycle Counting : Regular accuracy checks with ABC classification
Seasonal Planning : Prepare for demand fluctuations in advance
Performance Monitoring : Track key metrics like turnover and accuracy
Error Handling : Implement robust error recovery and alerting
Testing : Comprehensive unit and integration tests
Security : Secure API keys and implement proper access controls
Troubleshooting
Check API rate limits and implement backoff
Verify webhook endpoints are accessible
Review inventory update timestamps
Check for concurrent update conflicts
Forecasting Accuracy Problems
Increase historical data collection period
Review seasonal adjustment factors
Check for data quality issues
Consider external factors (promotions, market changes)
Multi-location Allocation Errors
Verify location data and shipping costs
Check inventory reservation logic
Review allocation scoring algorithm
Test with edge cases (zero inventory, single location)
Next Steps
Conclusion
You now have a comprehensive inventory management system that handles:
✅ Multi-location inventory optimization
✅ Intelligent demand forecasting
✅ Automated replenishment
✅ Cycle counting and accuracy tracking
✅ Seasonal planning and preparation
✅ Real-time monitoring and alerts
This system provides the foundation for scalable, efficient inventory operations that can adapt to your business needs and grow with your company.