Executive Overview
The StateSet Synthetic Data Studio is an agentic AI platform that combines cutting-edge machine learning techniques with enterprise-grade infrastructure. Built around the innovative Group Relative Policy Optimization (GRPO) algorithm, the platform enables organizations to train, optimize, and deploy sophisticated conversational AI agents.
Key Architectural Principles
Microservices-based Modular, scalable, and maintainable architecture
Cloud-native Kubernetes-ready with auto-scaling capabilities
Event-driven Real-time processing with WebSocket support
API-first RESTful APIs with GraphQL support planned
Security-first Multi-layer security with encryption and authentication
Performance-optimized Sub-200ms API response times at scale
System Architecture
High-Level Architecture
Component Communication
Synchronous Flow Asynchronous Flow
Technology Stack
Frontend Stack
Core Technologies
Framework : React 18 with TypeScript
State Management : Redux Toolkit + RTK Query
UI Components : Ant Design (antd)
Styling : Tailwind CSS + Custom CSS
Build Tools : Create React App with Craco
Supporting Libraries
Real-time : Socket.io Client
Charts : Recharts, Apache ECharts
Code Editor : Monaco Editor
Forms : React Hook Form
Testing : Jest + React Testing Library
Backend Stack
Core Technologies
Framework : FastAPI (Python 3.9+)
ASGI Server : Uvicorn
Database : PostgreSQL 14+ with SQLAlchemy
Cache : Redis 7+ (multi-layer caching)
Queue : Celery with Redis broker
ML & Infrastructure
ML Framework : PyTorch + Transformers
File Storage : S3-compatible object storage
WebSockets : FastAPI WebSocket support
Monitoring : Prometheus + Grafana
Logging : ELK Stack
Infrastructure Stack
Container Platform :
- Docker & Docker Compose
- Kubernetes (K8s)
- Helm Charts
Observability :
- Prometheus + Grafana (Metrics)
- ELK Stack (Logging)
- OpenTelemetry + Jaeger (Tracing)
CI/CD :
- GitHub Actions / GitLab CI
- ArgoCD (GitOps)
- Tekton Pipelines
Service Mesh :
- Istio (planned)
- Linkerd (alternative)
Core Components
1. GRPO Training Engine
The heart of the platform, implementing Group Relative Policy Optimization:
class GRPOArchitecture :
"""Core GRPO training architecture"""
components = {
"trajectory_generator" : {
"purpose" : "Generates multiple response trajectories" ,
"features" : [ "Parallel generation" , "Memory efficient" ]
},
"reward_computer" : {
"purpose" : "Hierarchical reward calculation" ,
"features" : [ "Multi-objective" , "Custom functions" ]
},
"advantage_estimator" : {
"purpose" : "Group-relative advantage computation" ,
"features" : [ "Baseline normalization" , "Variance reduction" ]
},
"policy_optimizer" : {
"purpose" : "PPO-based policy updates" ,
"features" : [ "Gradient clipping" , "KL control" ]
},
"kl_controller" : {
"purpose" : "Adaptive KL divergence control" ,
"features" : [ "Dynamic adjustment" , "Stability monitoring" ]
}
}
class GRPOArchitecture :
"""Core GRPO training architecture"""
components = {
"trajectory_generator" : {
"purpose" : "Generates multiple response trajectories" ,
"features" : [ "Parallel generation" , "Memory efficient" ]
},
"reward_computer" : {
"purpose" : "Hierarchical reward calculation" ,
"features" : [ "Multi-objective" , "Custom functions" ]
},
"advantage_estimator" : {
"purpose" : "Group-relative advantage computation" ,
"features" : [ "Baseline normalization" , "Variance reduction" ]
},
"policy_optimizer" : {
"purpose" : "PPO-based policy updates" ,
"features" : [ "Gradient clipping" , "KL control" ]
},
"kl_controller" : {
"purpose" : "Adaptive KL divergence control" ,
"features" : [ "Dynamic adjustment" , "Stability monitoring" ]
}
}
Distributed Training : Multi-GPU/multi-node support
Auto-optimization : Hyperparameter tuning
Real-time Monitoring : Training metrics dashboard
Version Control : Model checkpointing
Resource Management : Dynamic GPU allocation
2. Synthetic Data Generation Pipeline
Pipeline Components:
3. Agent Deployment Service
class AgentDeploymentArchitecture :
"""Agent deployment and lifecycle management"""
features = {
"model_registry" : {
"versioning" : "Semantic versioning" ,
"metadata" : "Training configs, metrics" ,
"rollback" : "One-click rollback support"
},
"deployment_manager" : {
"strategies" : [ "Blue-green" , "Canary" , "A/B testing" ],
"scaling" : "Auto-scaling based on load" ,
"health" : "Continuous health monitoring"
},
"load_balancer" : {
"routing" : "Intelligent request routing" ,
"affinity" : "Session affinity support" ,
"failover" : "Automatic failover"
},
"monitoring" : {
"metrics" : "Latency, throughput, errors" ,
"alerts" : "Configurable alerting" ,
"dashboards" : "Real-time Grafana dashboards"
}
}
4. Real-time Communication Layer
Features:
Connection pooling and management
Heartbeat monitoring (30s intervals)
Message queuing with delivery guarantees
Horizontal scaling with Redis clustering
Graceful reconnection handling
Data Flow Architecture
Training Data Flow
Document Upload
Raw documents uploaded to S3-compatible storage
POST / api / v1 / documents / upload
Content - Type: multipart / form - data
Processing Pipeline
Documents processed through extraction pipeline
# Async processing job
job_id = process_documents.delay(document_ids)
Synthetic Generation
LLM generates variations based on templates
synthetic_data = generate_synthetic_qa(
documents = processed_docs,
count = 1000 ,
quality_threshold = 0.8
)
Quality Curation
ML models filter and score generated data
curated_data = quality_filter.apply(
synthetic_data,
min_score = 0.85
)
Training Preparation
Data formatted for GRPO training
training_dataset = prepare_grpo_dataset(
curated_data,
reward_function = custom_reward
)
Model Training
GRPO engine trains on prepared data
model = grpo_trainer.train(
dataset = training_dataset,
config = grpo_config
)
Request Processing Flow
# API Request Flow with Caching
async def process_request ( request : Request):
# 1. Authentication
user = await auth_service.validate_token(request.headers)
# 2. Rate Limiting
if not await rate_limiter.check(user.id):
raise HTTPException( 429 , "Rate limit exceeded" )
# 3. Cache Check
cache_key = generate_cache_key(request)
cached = await redis.get(cache_key)
if cached:
return JSONResponse(cached)
# 4. Business Logic
result = await business_logic.process(request)
# 5. Cache Update
await redis.setex(cache_key, 3600 , result)
# 6. Response
return JSONResponse(result)
API Gateway Features
Security Features
Rate Limiting : Token bucket algorithm
Authentication : JWT with refresh tokens
Authorization : RBAC + ABAC
Input Validation : Pydantic models
CORS : Configurable origins
Performance Features
Response Caching : ETag support
Compression : Gzip/Brotli
Connection Pooling : Keep-alive
Load Balancing : Round-robin/least-conn
Circuit Breaker : Fault tolerance
Security Architecture
Multi-Layer Security Model
Security Components
Caching Strategy
class MultiLayerCache :
"""Three-layer caching architecture"""
def __init__ ( self ):
# L1: In-memory LRU Cache (microseconds)
self .memory_cache = LRUCache( maxsize = 1000 )
# L2: Redis Cache (sub-millisecond)
self .redis_cache = Redis(
host = 'redis-cluster' ,
decode_responses = True ,
socket_keepalive = True
)
# L3: Database with optimized queries
self .db = Database()
async def get ( self , key : str ):
# Check L1
if value := self .memory_cache.get(key):
return value
# Check L2
if value := await self .redis_cache.get(key):
self .memory_cache[key] = value
return value
# Check L3
if value := await self .db.query(key):
await self .redis_cache.setex(key, 3600 , value)
self .memory_cache[key] = value
return value
return None
Scalability Architecture
Horizontal Scaling
Stateless services
Load balancing with health checks
Auto-scaling based on metrics
Session affinity when needed
Vertical Scaling
Resource limits and requests
Memory-optimized instances for ML
GPU instances for training
Burst capacity handling
Data Scaling
Database sharding strategies
Time-series data partitioning
Object storage for large files
CDN for static assets
Target Metrics :
API :
response_time_p95 : < 200ms
throughput : > 10,000 req/s
error_rate: < 0.1%
Training :
samples_per_hour_per_gpu : > 10,000
gpu_utilization: > 90%
memory_efficiency: > 85%
Infrastructure :
concurrent_users : > 10,000
websocket_connections: > 100,000
cache_hit_rate: > 90%
uptime: 99.9%
Database :
query_time_p95 : < 50ms
connection_pool_efficiency : > 95%
replication_lag: < 1s
Development Guidelines
Coding Standards
Python Backend TypeScript Frontend API Design """
Python Coding Standards
"""
# 1. Follow PEP 8 style guide
from typing import List, Optional, Dict, Any
import asyncio
from datetime import datetime
# 2. Type hints for all functions
async def process_training_job (
job_id : str ,
config : Dict[ str , Any],
timeout : Optional[ int ] = 3600
) -> TrainingResult:
"""
Process a training job asynchronously.
Args:
job_id: Unique job identifier
config: Training configuration
timeout: Maximum execution time in seconds
Returns:
TrainingResult object with metrics
Raises:
TrainingError: If training fails
TimeoutError: If timeout exceeded
"""
try :
async with timeout_context(timeout):
result = await train_model(job_id, config)
return result
except asyncio.TimeoutError:
raise TimeoutError ( f "Job { job_id } exceeded timeout" )
except Exception as e:
logger.error( f "Training failed: { e } " )
raise TrainingError( str (e))
# 3. Comprehensive error handling
class TrainingError ( Exception ):
"""Custom exception for training errors"""
pass
# 4. Async/await for I/O operations
async def fetch_training_data ( dataset_id : str ) -> Dataset:
async with get_db_session() as session:
return await session.get(Dataset, dataset_id)
"""
Python Coding Standards
"""
# 1. Follow PEP 8 style guide
from typing import List, Optional, Dict, Any
import asyncio
from datetime import datetime
# 2. Type hints for all functions
async def process_training_job (
job_id : str ,
config : Dict[ str , Any],
timeout : Optional[ int ] = 3600
) -> TrainingResult:
"""
Process a training job asynchronously.
Args:
job_id: Unique job identifier
config: Training configuration
timeout: Maximum execution time in seconds
Returns:
TrainingResult object with metrics
Raises:
TrainingError: If training fails
TimeoutError: If timeout exceeded
"""
try :
async with timeout_context(timeout):
result = await train_model(job_id, config)
return result
except asyncio.TimeoutError:
raise TimeoutError ( f "Job { job_id } exceeded timeout" )
except Exception as e:
logger.error( f "Training failed: { e } " )
raise TrainingError( str (e))
# 3. Comprehensive error handling
class TrainingError ( Exception ):
"""Custom exception for training errors"""
pass
# 4. Async/await for I/O operations
async def fetch_training_data ( dataset_id : str ) -> Dataset:
async with get_db_session() as session:
return await session.get(Dataset, dataset_id)
/**
* TypeScript Coding Standards
*/
// 1. Strict TypeScript settings
// tsconfig.json: "strict": true
// 2. Interface definitions
interface TrainingJob {
id : string ;
status : 'pending' | 'running' | 'completed' | 'failed' ;
progress : number ;
config : TrainingConfig ;
metrics ?: TrainingMetrics ;
createdAt : Date ;
updatedAt : Date ;
}
// 3. Component typing
interface DashboardProps {
userId : string ;
onJobSelect : ( jobId : string ) => void ;
}
const Dashboard : React . FC < DashboardProps > = ({
userId ,
onJobSelect
}) => {
// 4. Custom hooks for logic reuse
const { jobs , loading , error } = useTrainingJobs ( userId );
// 5. Error boundaries
if ( error ) {
return < ErrorBoundary error ={ error } />;
}
return (
< div className = "dashboard" >
{ /* Component implementation */ }
</ div >
);
};
// 6. Async handling with proper types
const fetchJobs = async (
userId : string
) : Promise < TrainingJob []> => {
try {
const response = await api . get < TrainingJob []>(
`/users/ ${ userId } /jobs`
);
return response . data ;
} catch ( error ) {
console . error ( 'Failed to fetch jobs:' , error );
throw new Error ( 'Failed to load training jobs' );
}
};
# RESTful API Design Principles
# 1. Consistent naming conventions
/api/v1/resources # Plural for collections
/api/v1/resources/{id} # Singular for items
# 2. HTTP methods usage
GET - Read operations
POST - Create operations
PUT - Full updates
PATCH - Partial updates
DELETE - Delete operations
# 3. Status codes
200 OK - Successful GET/PUT/PATCH
201 Created - Successful POST
204 No Content - Successful DELETE
400 Bad Request - Invalid request
401 Unauthorized - Authentication required
403 Forbidden - Insufficient permissions
404 Not Found - Resource not found
422 Unprocessable - Validation errors
429 Too Many Requests - Rate limit exceeded
500 Internal Error - Server error
# 4. Response format
{
"data" : {
"id" : "123" ,
"type" : "training_job" ,
"attributes" : {
"status" : "running" ,
"progress" : 0.75
}
},
"meta" : {
"timestamp" : "2025-01-20T10:00:00Z" ,
"version" : "1.0.0"
}
}
# 5. Error format
{
"error" : {
"code" : "VALIDATION_ERROR" ,
"message" : "Invalid training configuration" ,
"details" : {
"field" : "batch_size" ,
"reason" : "Must be between 1 and 128"
}
}
}
Testing Architecture
Future Architecture Roadmap
Phase 1: Foundation Enhancement (Q1 2025)
GraphQL API Implementation
type Query {
models ( filter : ModelFilter , page : Int , limit : Int ): ModelConnection !
model ( id : ID ! ): Model
trainingJobs ( status : JobStatus ): [ TrainingJob ! ] !
}
type Mutation {
startTraining ( input : TrainingInput ! ): TrainingJob !
deployModel ( modelId : ID ! , config : DeployConfig ! ): Deployment !
}
type Subscription {
trainingProgress ( jobId : ID ! ): TrainingUpdate !
}
Service Mesh Integration
Istio deployment for traffic management
mTLS for service-to-service communication
Advanced traffic routing and canary deployments
Advanced Monitoring
Distributed tracing with OpenTelemetry
Custom metrics and SLI/SLO tracking
AI-powered anomaly detection
Multi-tenancy Support
Namespace isolation in Kubernetes
Resource quotas per tenant
Tenant-specific data segregation
Phase 2: Advanced Features (Q2 2025)
Multi-modal Support
Text + Vision model training
Audio processing capabilities
Cross-modal synthetic data
Federated Learning
Privacy-preserving training
Edge device support
Differential privacy integration
Edge Deployment
Model optimization for edge
ONNX runtime support
Mobile SDK development
AutoML Features
Automated hyperparameter tuning
Neural architecture search
Automatic feature engineering
Phase 3: Enterprise Scale (Q3 2025)
Global CDN Integration : CloudFlare/Fastly integration
Disaster Recovery : Multi-region failover, automated backups
Compliance Certifications : SOC2, HIPAA, ISO 27001
White-label Support : Customizable branding and domains
Phase 4: Innovation (Q4 2025)
Quantum-ready Algorithms : Hybrid classical-quantum training
Neuromorphic Computing : Support for brain-inspired chips
Explainability Dashboard : SHAP/LIME integration
Self-optimizing Infrastructure : AI-driven resource management
Architecture Decision Records (ADRs)
Conclusion
The Synthetic Data Studio architecture represents a world-class platform that combines cutting-edge AI research with enterprise-grade engineering. The architecture delivers:
Technical Excellence
Performance : Sub-200ms API responses
Scalability : 10,000+ concurrent users
Reliability : 99.9% uptime SLA
Security : Multi-layer protection
Business Value
Time to Market : Rapid deployment
Cost Efficiency : Optimized resource usage
Flexibility : Adapt to changing needs
Innovation : Future-ready platform
This architecture positions the platform to capture significant market share in the rapidly growing conversational AI space while maintaining the flexibility to adapt to future technological advances.
Architecture Team Contact : For questions or contributions to this architecture guide, please contact the Platform Architecture Team at architecture@stateset.com